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Aims of the Presentation

• Demonstrate competence in Navya-Nyāya logic.

• Demonstrate an understanding of the formal techniques used to symbolize the logic.

• Demonstrate an understanding of the philosophical history of the logic.



Recap of Paradox

How is a paradox different from a contradiction?

A paradox is the distinct assertion of a statement and its contrary. A
contradiction is the assertion of a known falsity such as a
conjunction of contraries.

“A veridical paradox packs a surprise, but the surprise quickly
dissipates itself as we ponder the proof. A falsidical paradox packs a
surprise, but is seen as a false alarm when we solve the underlying
fallacy. An antinomy, however, packs a surprise that can be
accommodated by nothing less than a repudiation of our conceptual
heritage." (The Ways of Paradox, WVO Quine)

WVO Quine
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Recap of Inclosure

Inclosure Schema
Let ϕ and ψ be two predicates, δ be a possibly partial function. The
following two conditions are mutually inconsistent:

1. Existence - Ω = {y; ϕ(y)} exists and ψ(Ω).
2. (a) Transcendence - if S ⊆ Ω and ψ(S), then δ(S) ∉ S.

(b) Closure - if S ⊆ Ω and ψ(S), then δ(S) ∈ Ω

Graham Priest
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Let ϕ and ψ be two predicates, δ be a possibly partial function. The
following two conditions are mutually inconsistent:

1. Existence - Ω = {y; ϕ(y)} exists and ψ(Ω).
2. (a) Transcendence - if S ⊆ Ω and ψ(S), then δ(S) ∉ S.

(b) Closure - if S ⊆ Ω and ψ(S), then δ(S) ∈ Ω

Russell’s Paradox
Consider ϕ(x) as the predicate “x ∉ x". ψ(y) is the universal
predicate true of anything. δ is the identity function. Then,

• Ω = {x |x ∉ x} exists and ψ(Ω) holds.
• Consider the case Ω ⊆ Ω. Then, from transcendence, we

have Ω = δ(Ω) ∉ Ω. From closure, we have Ω = δ(Ω) ∈ Ω.

Graham Priest
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Let ϕ and ψ be two predicates, δ be a possibly partial function. The
following two conditions are mutually inconsistent:
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Liar Paradox
Consider ϕ(x) as the predicate “T (x)", the truth predicate. ψ(y) is
the predicate “y is definable". δ(y) is the function defined by
δ(y) = σ = ⌜σ ∉ y⌝ . Then,

• Ω = {x |T (x)} exists and ψ(Ω) holds.
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Recap of Truth

Alfred Tarski

In the context of theories of arithmetic, we attempted to define
truth using a formula ζ(x). This is generalized to arbitrary
languages by a predicate T (x) whose inputs are sentence names of
the language.

Q: What is a plausible axiom schema for a truth-predicate T (x)?

It is eminently plausible to require T (⌜P⌝) ≡ P for all P ∈
Prop(L). Assuming that our language can interpret arithmetic, we
have a theorem ϕ ≡ ¬T (⌜ϕ⌝) by the diagonal lemma on ¬T (x).

ϕ is the liar sentence in the formal setting.

The axiom schema has ϕ ≡ T (⌜ϕ⌝). Then, we have
T (⌜ϕ⌝) ≡ ¬T (⌜ϕ⌝). Under classical logic, this entails
T (⌜ϕ⌝) ∧ ¬T (⌜ϕ⌝).

A theory of truth predicates must at least do one of three things: (1)
Deny a full truth predicate (2) Admit exceptions to the schema or
(3) Change the underlying logic.



Recap of Truth

Alfred Tarski

In the context of theories of arithmetic, we attempted to define
truth using a formula ζ(x). This is generalized to arbitrary
languages by a predicate T (x) whose inputs are sentence names of
the language.

Q: What is a plausible axiom schema for a truth-predicate T (x)?

It is eminently plausible to require T (⌜P⌝) ≡ P for all P ∈
Prop(L). Assuming that our language can interpret arithmetic, we
have a theorem ϕ ≡ ¬T (⌜ϕ⌝) by the diagonal lemma on ¬T (x).

ϕ is the liar sentence in the formal setting.

The axiom schema has ϕ ≡ T (⌜ϕ⌝). Then, we have
T (⌜ϕ⌝) ≡ ¬T (⌜ϕ⌝). Under classical logic, this entails
T (⌜ϕ⌝) ∧ ¬T (⌜ϕ⌝).

A theory of truth predicates must at least do one of three things: (1)
Deny a full truth predicate (2) Admit exceptions to the schema or
(3) Change the underlying logic.



Recap of Truth

Alfred Tarski

In the context of theories of arithmetic, we attempted to define
truth using a formula ζ(x). This is generalized to arbitrary
languages by a predicate T (x) whose inputs are sentence names of
the language.

Q: What is a plausible axiom schema for a truth-predicate T (x)?

It is eminently plausible to require T (⌜P⌝) ≡ P for all P ∈
Prop(L).

Assuming that our language can interpret arithmetic, we
have a theorem ϕ ≡ ¬T (⌜ϕ⌝) by the diagonal lemma on ¬T (x).

ϕ is the liar sentence in the formal setting.

The axiom schema has ϕ ≡ T (⌜ϕ⌝). Then, we have
T (⌜ϕ⌝) ≡ ¬T (⌜ϕ⌝). Under classical logic, this entails
T (⌜ϕ⌝) ∧ ¬T (⌜ϕ⌝).

A theory of truth predicates must at least do one of three things: (1)
Deny a full truth predicate (2) Admit exceptions to the schema or
(3) Change the underlying logic.



Recap of Truth

Alfred Tarski

In the context of theories of arithmetic, we attempted to define
truth using a formula ζ(x). This is generalized to arbitrary
languages by a predicate T (x) whose inputs are sentence names of
the language.

Q: What is a plausible axiom schema for a truth-predicate T (x)?

It is eminently plausible to require T (⌜P⌝) ≡ P for all P ∈
Prop(L). Assuming that our language can interpret arithmetic, we
have a theorem ϕ ≡ ¬T (⌜ϕ⌝) by the diagonal lemma on ¬T (x).

ϕ is the liar sentence in the formal setting.

The axiom schema has ϕ ≡ T (⌜ϕ⌝). Then, we have
T (⌜ϕ⌝) ≡ ¬T (⌜ϕ⌝). Under classical logic, this entails
T (⌜ϕ⌝) ∧ ¬T (⌜ϕ⌝).

A theory of truth predicates must at least do one of three things: (1)
Deny a full truth predicate (2) Admit exceptions to the schema or
(3) Change the underlying logic.



Recap of Truth

Alfred Tarski

In the context of theories of arithmetic, we attempted to define
truth using a formula ζ(x). This is generalized to arbitrary
languages by a predicate T (x) whose inputs are sentence names of
the language.

Q: What is a plausible axiom schema for a truth-predicate T (x)?

It is eminently plausible to require T (⌜P⌝) ≡ P for all P ∈
Prop(L). Assuming that our language can interpret arithmetic, we
have a theorem ϕ ≡ ¬T (⌜ϕ⌝) by the diagonal lemma on ¬T (x).

ϕ is the liar sentence in the formal setting.

The axiom schema has ϕ ≡ T (⌜ϕ⌝). Then, we have
T (⌜ϕ⌝) ≡ ¬T (⌜ϕ⌝). Under classical logic, this entails
T (⌜ϕ⌝) ∧ ¬T (⌜ϕ⌝).

A theory of truth predicates must at least do one of three things: (1)
Deny a full truth predicate (2) Admit exceptions to the schema or
(3) Change the underlying logic.



Recap of Truth

Alfred Tarski

In the context of theories of arithmetic, we attempted to define
truth using a formula ζ(x). This is generalized to arbitrary
languages by a predicate T (x) whose inputs are sentence names of
the language.

Q: What is a plausible axiom schema for a truth-predicate T (x)?

It is eminently plausible to require T (⌜P⌝) ≡ P for all P ∈
Prop(L). Assuming that our language can interpret arithmetic, we
have a theorem ϕ ≡ ¬T (⌜ϕ⌝) by the diagonal lemma on ¬T (x).

ϕ is the liar sentence in the formal setting.

The axiom schema has ϕ ≡ T (⌜ϕ⌝). Then, we have
T (⌜ϕ⌝) ≡ ¬T (⌜ϕ⌝). Under classical logic, this entails
T (⌜ϕ⌝) ∧ ¬T (⌜ϕ⌝).

A theory of truth predicates must at least do one of three things: (1)
Deny a full truth predicate (2) Admit exceptions to the schema or
(3) Change the underlying logic.



Recap of Truth

Alfred Tarski

In the context of theories of arithmetic, we attempted to define
truth using a formula ζ(x). This is generalized to arbitrary
languages by a predicate T (x) whose inputs are sentence names of
the language.

Q: What is a plausible axiom schema for a truth-predicate T (x)?

It is eminently plausible to require T (⌜P⌝) ≡ P for all P ∈
Prop(L). Assuming that our language can interpret arithmetic, we
have a theorem ϕ ≡ ¬T (⌜ϕ⌝) by the diagonal lemma on ¬T (x).

ϕ is the liar sentence in the formal setting.

The axiom schema has ϕ ≡ T (⌜ϕ⌝). Then, we have
T (⌜ϕ⌝) ≡ ¬T (⌜ϕ⌝). Under classical logic, this entails
T (⌜ϕ⌝) ∧ ¬T (⌜ϕ⌝).

A theory of truth predicates must at least do one of three things: (1)
Deny a full truth predicate (2) Admit exceptions to the schema or
(3) Change the underlying logic.



Recap of Incompletenesses

Kurt Gödel

Theorem (First Incompleteness)
Any ω-consistent recursively axiomatized extension of Q is incomplete.

Theorem (Second Incompleteness)
Let T be a consistent recursively axiomatizable extension of Q, set of
axioms being Γ, then T is not derivable from Γ.



Recap of Epistemic Syntactic Version

In the context of formal epistemology and epistemic logic, we can
introduce an predicate K , called the knowability predicate. We
adopt a slightly weaker version of the T schema for K , namely,

• K (⌜ϕ⌝) ⊃ ϕ for all ϕ.
• K (⌜K (⌜ϕ⌝) ⊃ ϕ⌝) for all ϕ.
• K (⌜ϕ⌝) for any ϕ ∈Q.
• K (⌜ϕ ⊃ ψ⌝) ⊃ (K (⌜ϕ⌝) ⊃ K (⌜ψ⌝)) for all ϕ, ψ.

Theorem
Any formal theory extending Q and containing the K axiom schemas
is inconsistent

Richard Montague
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Navya-Nyāya Logic

Udayana

Raghunātha Śiroman. i

Navya-Nyāya logic

• 14th century to the 20th century
• Synthesis of Nyāya syllogism, debates with Dharmakı̄rti,

Dignāga, Prācı̄na Nyāya and Vaiśes.ika
• Gaṅgeśa’s Tattvacintāman. i.
• Three main hotspots of Navya-Nyāya emerged in Vārān. asi,

Mithilā and Navadvı̄pa.
• Novel, rational and cosmopolitan outlook
• Akin to early modernity (post-Renaissance) in Europe.
• Usually presented in a pseudo-artificial form of Sanskrit - a

formal language yet not symbolic.
.



Cognition

Navya-Nyāya logic deals with jñāna. For logic, jñāna
must be thought of a particular event of a
apprehension/judgement of something.

ghat. o nı̄lah.
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As the Husserlian wisdom goes, awareness is always
awareness of something. However, non-existent
entities of the impossible kind, do not have any
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is not the right choice for formalizing Nyāya logics.

ghat. o nı̄lah.



Cognition

Navya-Nyāya logic deals with jñāna. For logic, jñāna
must be thought of a particular event of a
apprehension/judgement of something.

Nor does one have any troubles with formalizing
jñāna due to their being private entities of epistemic
agents. As these jñāna are verbalizable, they become
intersubjective. An analysis of the verbalized cognition
thus supplants worries about the impossibility of
forming a logic from Nyāya epistemology.

ghat. o nı̄lah.



Inference

1. Pratijñā Fm: The mountain has fire on it.
2. Hetu Sm: Because, the mountain has smoke on it.
3. Dr.s.t.ānta ∀x(Sx → Fx): Whatever has smoke on it, has fire on it.
4. Upanaya Sm ∧ (Sm → Fm): The mountain is so, i.e., it has smoke on it as a sign of

fire.
5. Nigamana Fm: Thus, the mountain has fire on it.



Content of Cognition

The jñāna are always complex. A cognition of the form ‘The pot is blue’ has sub-elements
of being something that is present, having potness and having blueness. In general, one
supposes that a jñāna has the structure of being a knowledge of a relation (sam. sarga)
between a qualificandum (viśes.ya) and a qualifier (viśes.an. a).

The qualificandum is the thing to which we ascribe a qualifier. It may be the case that for a
single cognition, we can formulate different yet equivalent ways to express it where the
qualifier and qualificandum interchange positions. The qualifier-qualificandum is the
generic presentation of a prototypical cognition. One may think of the qualifier as being
superimposed (ādheya) onto the substratum (ādhāra) or locus (adhikaran. a).
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Relations, Adjunct, Subjuncts and Limitors

Four relations are of special importance: (i) inherence (samavāya)
(ii) contact or conjunction (sam. yoga) (iii) svarūpa (self-establishing)
and (iv) identity (tādātmya). A relation has two aspects, an adjunct
and a subjunct.

A locution of the monadic form “... is wise” denotes some abstract
property, wisdom in this case. The loci of this locution are exactly
the values of x in x is wise.

Suppose we had the rather more complex structure of ‘x is the
mother of y.’ We can still use relational abstracts in this case. In
particular, these abstracts are conditioned (nirūpita) by something
else. So, the paraphrasing corresponding to the example here is
‘motherhood occurs in x and is condition by y’.
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Relations, Adjunct, Subjuncts and Limitors

A locution of the monadic form “... is wise” denotes some abstract
property, wisdom in this case. The loci of this locution are exactly
the values of x in x is wise.

Suppose we had the rather more complex structure of ‘x is the
mother of y.’ We can still use relational abstracts in this case. In
particular, these abstracts are conditioned (nirūpita) by something
else. So, the paraphrasing corresponding to the example here is
‘motherhood occurs in x and is condition by y’.

The concept of limitor or avacchedaka is used in connection with
loci. ‘In general, a relational abstract residing in an entity may be
delimited by the specific relation in which that entity, as a locus of
said abstract occurs.’



Example



Absence

Absence is ontologically serious for the Naiyāyikas.
Navya-Naiyāyikas admit four kinds of absences: (i)
mutual absence (anyonyābhāva) (ii) absence of
not-yet (prāgabhāva) (iii) absence of no-more
(dhvam. sābhāva) and (iv) absolute absence
(atyantābhāva).

bhūtale ghat. ābhāva



Absence

Negation is always negation of something. That
somthing, counterpositive is called the pratyogı̄. The
counterpositive determines the absence and vice versa.

bhūtale ghat. ābhāva



Absence

In particular, Ganeri suggests that if α is a sentence,
then the negation of that sentence says something
about the anti-object of the sentence α (the
absence-of-x say). Following Raghunātha-esque
semantics, he suggests the following holds

1. if ¬Tα then T¬α
2. T¬¬α iff ¬T¬α

In particular, he rejects T¬α → ¬Tα.
bhūtale ghat. ābhāva



Syntax for Ganeri’s Symbolization

Jonardon Ganeri

Jonardon Ganeri proposes a symbolization for a fragment of the
Navya-Nyāya technical language.

• First-order setting
• Set-theoretic semantics
• Graph-theoretic semantics for the propositional part
• Extensional logic
• Any addition must be minimal intensional extension.

1. There is a set of primitive terms - a, b, c, . . . - ‘pot’

2. There is a set of abstract terms - α, β, γ, . . . -‘potness’

3. There is an abstraction functor, “tva or tā” such that a − tva = α,
-‘pot-ness=potness’.

4. There is a set of relational abstract expressions such etc - R, S,T, . . . - ‘locushood’

5. There is a conditioning operator which forms a term from a relational abstract
expression and another term. - Rα, Sβ,Tγ, . . . - ‘locushood-conditioned-by-potness’

6. There is the sentence formation operator location/delimitation, represented by a
period .

7. There is a sentence formation operator colocation, represented by a colon :.

8. There is a negation functor - N, which is equivalent to the absenthood relational
abstract expression.

9. There are the logical connectives ∧,∨,→,¬.
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5. There is a conditioning operator which forms a term from a relational abstract
expression and another term. - Rα, Sβ,Tγ, . . . - ‘locushood-conditioned-by-potness’

6. There is the sentence formation operator location/delimitation, represented by a
period .

7. There is a sentence formation operator colocation, represented by a colon :.

8. There is a negation functor - N, which is equivalent to the absenthood relational
abstract expression.

9. There are the logical connectives ∧,∨,→,¬.
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Syntax for Ganeri’s Symbolization contd.

Well-formed formulae or ‘sentences’ of NN are defined recursively thus. Let a, b, α, β be
any terms (primitive and abstract). Let R, S be relational abstract expressions.

1. a.Rα is a well-formed formula.

2. a.Rb is a well-formed formula.

3. α.Ra is a well-formed formula.

4. α.Rβ is a well-formed formula.

5. α:Rβ is a well-formed formula.

6. If A,B are two well-formed formulae, A ∧ B,A ∨ B,A → B,¬A are also well-formed
formulae.

7. Nothing else.
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Semantics for Ganeri’s symbolization

The components of an interpretation of NN are the following:
1. Each occurrence of a primitive term a is assigned an object X from a set of objects

Univ, the universe of objects.

2. The abstract term α is assigned a subset x ⊆ Univ such that if a is assigned X ,
a − tva = α, then X ∈ x.

3. The abstract term β = b − tva formed by the individuality abstraction function is the
singleton set {Y } if b is assigned Y ∈ Univ.

4. The relational abstract term R is assigned a particular relation R ⊆ Univ × Univ.

5. The term Rb is assigned the set RY = {X |X ∈ Univ, (X ,Y ) ∈ R} if b is assigned to
Y ∈ Univ.

6. The term Rβ is assigned the set Ry = {X |X ∈ Univ, (X ,Y ) ∈ R when Y ∈ y} where
β is assigned to the set y ⊆ Univ.
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Clarification of Scope

A particular mountain m is the locus of a particular smoke s m.Ls

A particular mountain m is the locus of some smoke m.Lσ

A particular mountain m is the locus of all smoke σ.L−1m

Some mountain is the locus of a particular smoke s s.L−1μ

Every mountain is the locus of a particular smoke s μ.Ls

Some mountain is the locus of some smoke μ:Lσ

Every mountain is the locus of some smoke or other μ.Lσ

Every smoke is on some mountain or other’ corresponds to the sentence σ.L−1μ



First-Order Equivalence

The fragment of first order logic used is constructed as follows:
1. There is a dyadic predicate R

2. A negation (optional) ¬ before the predicate
3. The second entry of the predicate has either a constant or a variable bound by a

existential quantifier over a limited set β.
4. The first entry of the predicate has either a constant or a restricted universal or

restricted existential quantifier.
5. There is another optional negation ¬ of the widest scope.

Restricted quantifiers are essentially just adding a conjunction, i.e., (∃x : A)Fx is the same
as ∃x(Ax ∧ Fx). This identifies NN with a fragment of first order logic with two
quantifiers.
Consider the example ‘Every mountain is the locus of a particular smoke s’ - μ.Ls. This is
equivalent to (∃s : σ) (∀m : μ) (mLs)
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Syntax and Semantics for George Bealer’s property logic

The language T1 contains the following symbols:
1. A set of variables - x, y, z, . . .
2. A set of constants - a, b, c . . .
3. A set of predicate letters - Ri

j , with i denoting that Ri
j is i-ary

4. A unique 2-ary predicate - =
5. Delimiters - (, ), [, ]
6. Logical connectives - ∧,∨,→,¬
7. Quantifiers - ∃,∀



Syntax and Semantics for George Bealer’s property logic

For the first order part, the interpretation is done exactly as done in usual first order logic.
The semantics for the intensional part as such:
A term [A]x1 ,...,xn ; n ≥ 0 denotes:

1. A proposition if n = 0
2. A property if n = 1
3. A n-ary relation if n ≥ 2



Syntax and Semantics for George Bealer’s property logic

Let A be a well-formed formula The modal operators □,^ are defined as:

□A B [A] = [[A] = [A]]

^A B ¬□¬A

^A B ¬([¬A] = [[¬A] = [¬A]])



Axiomatic system for Bealer’s property logic

The axiomatization of T1 formed by the following axioms is sound and complete with
respect to the semantics:

• A1: Propositional tautologies

• A2: ∀xA(x) → A(t) where t is free for x in A.

• A3: ∀x(A → B) → (A → ∀xB) where x is not free in A.

• A4: x = x for all variables x.

• A5: (x = y) → (A(x, x) ↔ A(x, y)), where the in the formula A(x, x) some but not
necessarily all free occurrences of x are replaced by y.

• A6: ¬([A]x1 ,...,xn = [B]y1 ,...,ym ) where n ≠ m.

• A7: [A(x1, . . . , xn)]x1 ,...,xn = [A(y1, . . . , yn)]y1 ,...,yn where xi is replaced by yi

• A8: ( [A]x1 ,...,xn = [B]x1 ,...,xn ) ↔ (□∀x1 . . .∀xn (A ↔ B))
• A9: □A → A

• A10: □(A → B) → (□A → □B)
• A11: ^A → □^A



Axiomatic system for Bealer’s property logic

The rules of inference are the following:
1. Modus ponens: If ⊢ A and ⊢ A → B, then ⊢ B.
2. Universal quantification: If ⊢ A, then ⊢ ∀xA for any variable x.
3. Necessity introduction: If ⊢ A, then ⊢ □A.



tattvavat tad eva

The comprehension principle “tattvavat tad eva” is an important
rule of Navya-Nyāya logic. Essentially, it says “Anything which
possesses the property of ‘being that’ is that.” In this sentence, that
is used as a dummy noun.

Eberhard Guhe



tattvavat tad eva

The comprehension principle “tattvavat tad eva” is an important
rule of Navya-Nyāya logic. Essentially, it says “Anything which
possesses the property of ‘being that’ is that.” In this sentence, that
is used as a dummy noun. Suppose we have a property x-ness. Then
the rule tattvavat tad eva says, “anything that has the property of
x-ness is an x.” Guhe suggests the formalization:

aΔ[A(x)]x ↔ A(a)

Eberhard Guhe
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Suppose now that A, r is ¬xΔx.

Eberhard Guhe



tattvavat tad eva

aΔ[A(x)]x ↔ A(a)

According to the rule tattvavat tad eva, we have

rΔ[¬xΔx]x ↔ (¬rΔr)

Now suppose that rΔr. From modus tollens, we get rΔ[¬xΔx]x .
From modus ponens on this, we get ¬rΔr.

If instead, we suppose that ¬rΔr, then from modus ponens on the
rule, we get rΔ[¬xΔx]x . Hence, we have rΔr. Eberhard Guhe



Type-Theory to the Rescue

Type-Theory! A hierarchical ontology with many levels - urelements, set-like properties
and class-like properties.
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We use lower case bold face letters for urelements, uppercase letters for class-like properties
and lower case letters for set-like properties.The relevant extension in our case will be called
“T1+”.



Type-Theory to the Rescue

We use lower case bold face letters for urelements, uppercase letters for class-like properties
and lower case letters for set-like properties.The relevant extension in our case will be called
“T1+”.

The additional axioms of T1+ include the sethood axiom which states that every element
of a set is a set or an urelement i.e., ∀X∀x(x ∈ X → (Ex ∨ Sx)), the axioms of
Quine-Morse set theory (except the extensionality axiom) and the axioms of ZF (again
except the extensionality axiom).



Theorems for the Naiyāyikas

Guhe suggests a property-theoretic version of the axiom of foundation for the case of
Navya-Nyāya logic:

∀X (∃y(yΔX ) → ∃y(yΔX ∧ ∀z(zΔX → ¬zΔy)))

Theorem

¬∃(an)n∈ℕ∀i ∈ ℕ(ai+1Δai)

Proof.
Suppose there is a sequence an, n ∈ ℕ, such that ai+1Δai for all i ∈ ℕ. Let X be a property
whose loci are an, i.e., X = [∃n ∈ ℕ(x = an)]x . Then, we have
∀ai (aiΔX → ai+1Δai ∧ ai+1ΔX ). Turning the ai+1 into an existential quantification, we
get ∀ai (aiΔX → ∃z(zΔai ∧ zΔX )). This is in contradiction with the axiom of
foundation proposed above. □



Theorems for the Naiyāyikas

Theorem (De Morgan’s Law)

[¬∃y(Fy ∧ xLy) ∧ ¬∃y(Gy ∧ xLy)]x = [¬∃y((Fy ∨ Gy) ∧ xLy)]x

Ingalls gives definition of anyatara. If x is either fire or water (anyatara), then x possesses
the mutual absence to which the counterpositiveness is limited by a pair or mutual
absences, namely the mutual absence of fire and the mutual absence of water.

Proof.
(A1) (Fy ∨ Gy) ∧ xLy ↔ Fy ∧ xLy ∨ Gy ∧ xLy
(R2) ∀y((Fy ∨ Gy) ∧ xLy ↔ Fy ∧ xLy ∨ Gy ∧ xLy

(FOL) ∃y((Fy ∨ Gy) ∧ xLy) ↔ ∃y(Fy ∧ xLy ∨ Gy ∧ xLy)
(FOL) ∃y((Fy ∨ Gy) ∧ xLy) ↔ ∃y(Fy ∧ xLy) ∨ ∃y(Gy ∧ xLy)

(A1) ¬∃y((Fy ∨ Gy) ∧ xLy) ↔ ¬(∃y(Fy ∧ xLy) ∨ ∃y(Gy ∧ xLy))
(De Morgan) ¬∃y((Fy ∨ Gy) ∧ xLy) ↔ ¬∃y(Fy ∧ xLy) ∧ ¬∃y(Gy ∧ xLy)

(R2, R3) □∀x(¬∃y((Fy ∨ Gy) ∧ xLy) ↔ ¬∃y(Fy ∧ xLy) ∧ ¬∃y(Gy ∧ xLy))
(A8, R1) [¬∃y(Fy ∧ xLy) ∧ ¬∃y(Gy ∧ xLy)]x = [¬∃y((Fy ∨ Gy) ∧ xLy)]x

□



Theorems for the Naiyāyikas

1. 0 B [¬∃y(yΔx)]x
2. x! B [∃u(uΔx ∧ ∃v(vΔu ∧ y = [wΔu ∨w = v]uvw ))]xy
3. NNx (x is a natural number) if and only if ∀z(0Δz ∧ ∀y(yΔz → y!Δz) → xΔz)

The superscript after the square bracket represents that the variables are free. The standard
axioms then are formalizable in this system in the obvious way. Peano’s fifth axiom of
induction can also be included in the system as the following

∀z(0Δz ∧ ∀x(xΔz → x!Δz) → ∀x(NNx → xΔz))
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