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Possible non-Writers

“But to say that some people possibly are not
writers is modally the same as saying that
possibly some people are not writers, and
although one implies the other the meaning of
the one may be opposite to the other.”

(see Williamson 2013, pg 45)

Ibn Sina
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Logical Consequence

A tree is a partial order with a unique maximum element x0, such that for
any element xn, there is a unique finite chain of elements
xn ≤ xn−1 ≤ · · · ≤ x1 ≤ x0. The initial list of a tree is the sequence of a
premises.

At each node of the tree, we can apply a rule based on the maximal
propositional connective of the node. A choice of logic involves a particular
choice of rules for the propositional connectives.

A tree is called complete iff every rule that can be applied has been applied,
i.e., the leaves are atomic propositions (for finite tableaux).

A branch of the tree is called closed if both A and ¬A are in the branch. A
tree is closed iff all branches of the tree are closed.

We say A is a logical consequence of Σ (Σ ⊢ A) if there exists a tree with
the initial list as Σ and ¬A which is closed.
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What is Modal about Modal Logic?

Modal logics are logics which have extra unary propositional operators.
The usual modal logics are alethic (□,♢), temporal (G,H,F, P ), epistemic
(K) and deontic (O,P ). We are essentially, adding one more parameter to
keep track of.
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What is Modal about Modal Logic?

Modal logics are logics which have extra unary propositional operators.
The usual modal logics are alethic (□,♢), temporal (G,H,F, P ), epistemic
(K) and deontic (O,P ). We are essentially, adding one more parameter to
keep track of.
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De Re and De Dicto

’The tallest building will always be Asian.’ is ambiguous.

□∃xA(x)

∃x□A(x)



Quantified Modal Logic

Q: How do we extend propositional modal logic to quantified modal logic?



Quantified Modal Logic

Q: How do we extend propositional modal logic to quantified modal logic?
A: Just put them together!



Quantified Modal Logic

A ⊃ B - i

¬A - i B - i

¬(A ⊃ B) - i

A - i

¬B - i

¬¬P - i

P - i



Quantified Modal Logic

¬□P - i

♢¬P - i

¬♢P - i

□¬P - i

□P - i iRj

P - j

♢P - i

iRj P - j



Quantified Modal Logic

¬∃xP - i

∀x¬P - i

¬∀xP - i

∃x¬P - i

∀xP - i

Px(a) - i

∃xP - i

Px(c) - i



The Barcan Formula

Ruth Barcan Marcus

¬(♢∃xP (x) ⊃ ∃x♢P (x)) - 0

♢∃xP (x) - 0

¬∃x♢P (x) - 0

∃xP (x) - 1

P (a) - 1

¬♢P (a) - 0

¬P (a) - 1

Hence, we have ♢∃xP (x) ⊃ ∃x♢P (x)



Constant Domain Semantics

An interpretation of constant domain semantics is a quadrupule
⟨D,W,R, v⟩.

W is the set of possible worlds, R is the accessibility relation, D is the
domain of quantification and v assigns the elements of the language to
appropriate elements or subsets of D.



Varying Domain Semantics

An interpretation of variable domain semantics is also a quadrupule
⟨D,W,R, v⟩.

W is the set of possible worlds, R is the accessibility relation, D is the
domain of all objects (not quantification!) and v assigns the elements of the
language to appropriate elements or subsets of D. In addition to this, v
assigns each w ∈ W a subset of D, which is the domain of quantification for
that world.



Varying Domain Semantics

Now consider ∀xP (x) holds at world w. Then, for every object in the
domain of quantification of the world, a , P (a) holds. Now, say b /∈ v(w).
Then it is not the case that P (b) holds. Universal instantiation rule fails.
Instead, we will add a special unary predicate E as is done in free logic.



Varying Domain Semantics

∀xP - i

¬Ea - i Px(a) - i

∃xP - i

Ec - i

Px(c) - i



Counter-Model in Varying Domain Semantics

∂a

E

P

∂a

E

P

✓

✓

×

✓

w0 w1
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Semantic Consequence

An interpretation of the language L is T = (D,W,R, v). D is a non-empty
set and v is a function such that v(c) ∈ D and vw(Ri) ⊆ Dn if Ri is n-ary.
For every element d in D, add a constant kd to L.

The compatibility conditions are:

• v(Ri(a1, · · · , an)) = 1 iff (v(a1), · · · , v(an)) ∈ vw(Ri)

• v(∀xA) = 1 iff for all d ∈ D, v(A(kd/x)) = 1

• v(∃xA) = 1 iff for some d ∈ D, v(A(kd/x)) = 1

• v follows the same compatibility conditions for propositional languages.

A sentence Q is a semantic consequence of a set of sentences Σ iff there is
no interpretation v, such that v(P ) ∈ D for all P ∈ Σ but v(Q) /∈ D. In case
Q is a semantic consequence of Σ, we write Σ ⊨ Q.
A tautology A is a sentence such that it is a semantic consequence of the
empty set, i.e., ⊨ A.
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Completeness and Soundness

Soundness of validity and entailment: If Σ ⊢ Q, then Σ ⊨ Q.

Completeness of validity and entailment: If Σ ⊨ Q, then Σ ⊢ Q.

Theorem: The system K is sound and complete with respect to the
constant domain semantics and the constant domain tableaux.

Theorem: The system K is sound and complete with respect to the
variable domain semantics and the variable domain tableaux.



Monotonicity and Barcan Formulae

Theorem: Let F = ⟨W,R,D⟩ be a varying domain frame. The following
are equivalent:

• F is monotonic, i.e., for all w, v such that vRw, Dv ⊆ Dw

• The Converse Barcan Formula is valid in every model based on F .

• E(x) ⊃ □E(x) is valid in every normal model based on F .

• ∀x□E(x) is valid in every normal model based on F .

Theorem: Let F = ⟨W,R,D⟩ be a varying domain frame. The following
are equivalent:

• F is anti-monotonic, i.e., for all w, v such that vRw, Dw ⊆ Dv

• The Barcan Formula is valid in every model based on F .

• ♢E(x) ⊃ E(x) is valid in every normal model based on F .


